

JPEG2000 for video contribution over IP

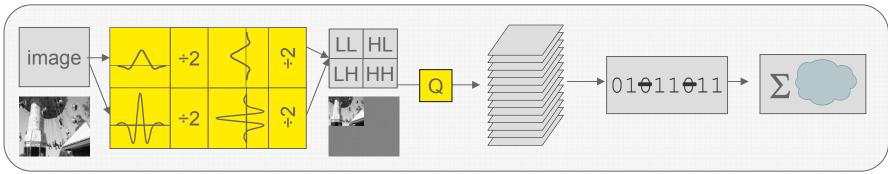
TNIPS

Janne T. Morstøl COO

JPEG2000 for video contribution over IP

• JPEG2000 Characteristics

Benefits Basic properties Operational modes and bitrates


• Transport and wrapping

IP Protocols Wrapping solutions Standardisation

- JPEG2000 Applications in broadcasting
- Case Studies

JPEG2000 Use Wavelet Compression

2D Wavelet transform (Multiple passes)	Quant.	Bitplane encoding	Codestream building Entropy code	Wrapping IP, FEC, MXF	
---	--------	----------------------	--	--------------------------	--

Low pass filter

High pass filter

JPEG2000 is a wavelet-based image compression standard. The standard supports two filter sets:

TNIX

- (9,7) Floating point filter (Low loss compression)
- (5,3) Integer filter (Lossless compression)

÷2

Down sampling

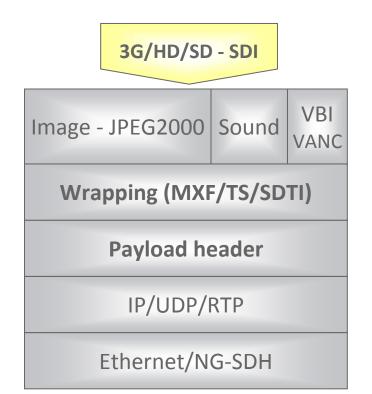
JPEG2000 for Broadcasting

JPEG2000 Characteristics	JPEG2000 Benefits
Picture by picture compression	 All images has same quality
	Low latency
Wavelet transform	 All pixels subject to same processing
	 High compression efficiency
Compression range	 High compression – high quality - lossless
Visual impairments	 10 bits video range
	 Blur (no blocking on low rate)
Layered codestream	 Remote edit on low quality layer
Multi generation	Low loss
Symmetrical	 Same hardware for encoder and decode

JPEG2000 Bitrates

• Normal compression mode (5-10% of original rate)

- -SDI 270 Mbps
 15 35 Mbps


 -HD-SDI 1.5 Gbps
 60 125 Mbps

 -3G-SDI 3 GBps
 150 300 Mbps
- Lossless mode (25-50% of original rate)
 - -SDI 100 115 Mbps -HD-SDI 400 - 500 Mbps -3G-SDI 800 - 1000 Mbps

JPEG2000 Transport Solution

IP/UDP/RTP

- Versatile (Sonet, DTM, NGN, metro Ethernet, VLAN)
- Layer 2 and Layer 3
- Cost effective (CAPEX and OPEX)
- Established technology for television transport

IP QOS

- Managed network
- Prioritising
- Forward error correction

Alternatives:

- 270 Mbps SDI/ASI Restricted reach and connectivity
- ATM Expensive

Standardisation

Video Services Forum

IP encapsulation Forward Error Correction

• JPEG2000/ MPEG-2 Systems

JPEG2000 Broadcast profile PES stream MPEG-2 system amendments

• SMPTE

31 FS AHG Low Latency Streaming MXF Roster32 NF IP Encapsulation32 NF Forward Error Correction

• JPEG2000 Alliance

Currently evaluating possibility for interoperability testing

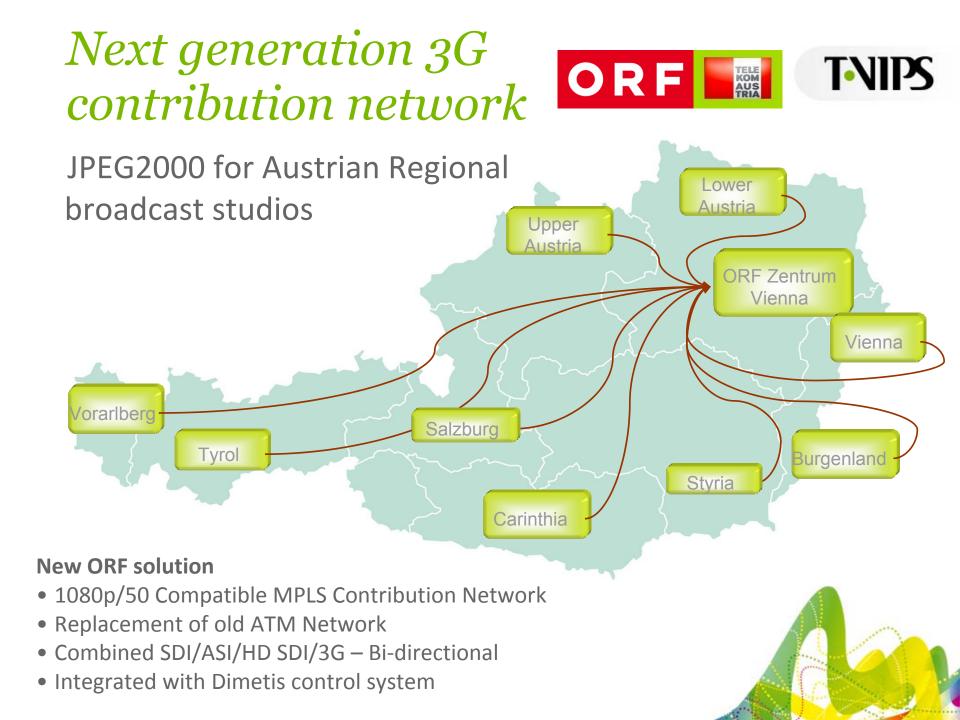
JPEG2000 encapsulation for Broadcasting

MXF	MPEG-2 Transport Stream
Commonly used format for studio production	Common format for video transport
Perfect lip sync	Lip sync is ok, but
Support for Metadata	Possible
No bit rate limit	ASI limited to 213 Mbit/s
Frame aligned wrapping	TS packets are interleaved
Direct ingestion is simple	Direct ingestion not frame accurate
No latency on FEC	Considerable latency for FEC

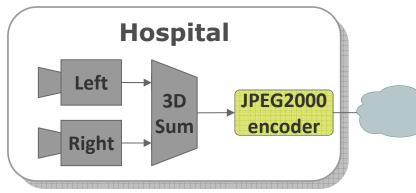
Advantages and Disadvantages

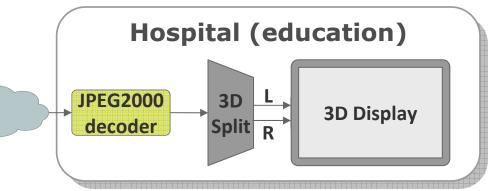
Feature	JPEG2000	MPEG-4 4:2:2	MPEG-2 4:2:2	Benefit
Latency	Low	High	High	Low end-to-end delay Interaction and live
Bitrate	High	Low	Medium	Network capacity savings Availability of connections
Frame aligned	Yes	No	No	Editing and storage
Multi-generation	Low loss	Loss	Loss	Several compression stages
Lossless	Yes	No	No	No quality loss
Visual artifacts	Blur	Blur Blocking	Blocking	Adapted to human visual system
Symmetrical	Yes	No	No	Same hardware for encoder and decoder
Complexity	Medium	High	High	Price Power consumption Ease of use

JPEG Primary Applications

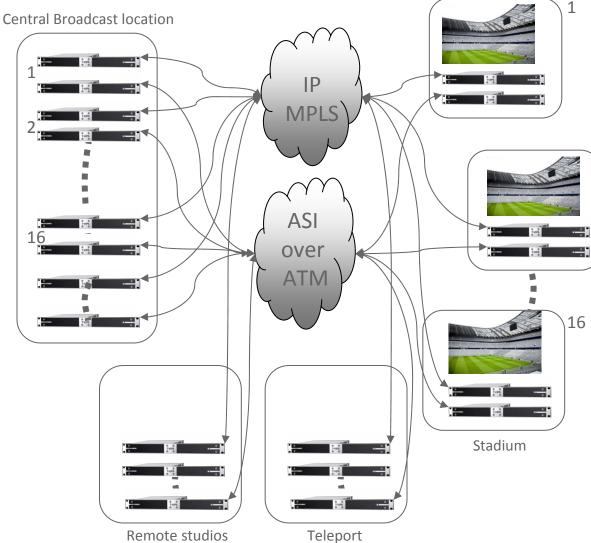

Event Contribution

Maintain a high quality and low latency


- Multi-site broadcasting / interviews
 Low latency on bidirectional links
 Studio to Studio program exchange
- Primary distribution


Feed to DTT/ satellite / cable and IPTV compression head-end

Performing the transmission of stereo image on robot surgery by JPEG2000


Using the hyper research network (KOREN) Dr. Young-woo Kim, Head of Gastric Cancer Center is performing the transmission of stereo image on robot surgery for gastric cancer at the 9th Scientific Conference of Laparoscopic Gastrointestinal Surgery Group on 23 May 2009 at the NCC.

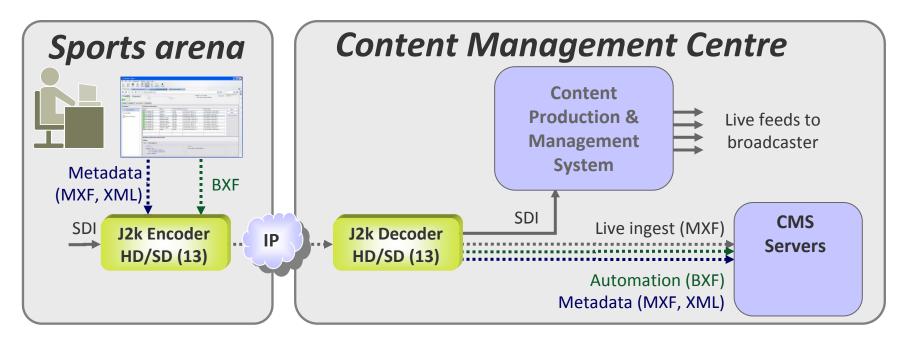
TNIPS

Contribution network for news and soccer

 Soccer contribution from 16 stadiums

TNIPS

- Contribution between studios
- Fixed contribution to teleport


2

 JPEG2000 selected thanks to quality, latency and price

Future Solution with JPEG2000 wrapped in MXF

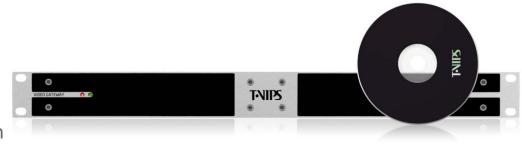
Ingestion without decoding – encoding

- Include meta data
- Include remote control

T-VIPS JPEG2000 solutions More than 1200 units deployed

- TVG415 SD JPEG2000
 TVG430 SD/HD JPEG2000
 - Configurable as encoder or decoder

• TVG450 SD/HD/3G-HD JPEG2000


- Bidirectional, configurable as encoder, decoder or mixture
- Up to 4 SD, 2 HD or 1 3G-HD in one unit
- Upgradable from SD to HD or 3G-HD

• Features:

- JPEG2000 video compression
- Transparent audio
- Extensive VBI handling
- MXF over IP or ASI transport
- Integrated frame store
- Compact with low power consumption (less than 10W per SD channel)

"We have evaluated compression technologies for a next generation MPLS based network to replace our existing ATM infrastructure. JPEG2000 over MXF format came out as the clear winner after we had evaulated different compression technologies"

DI Alexander Hetfleisch, ORF's project manager

Thank you for your attention!

janne.morstol@t-vips.com

